Войти

Как Вы оцениваете сайт?

Отлично - 65.6%
Хорошо - 12.5%
Удовлетворительно - 4.9%
Ужасно - 10.8%
Не знаю :) - 6.2%

Всего голосов:: 1732

Программа курса предпрофильной подготовки "Доказательства в решении уравнений"

Предмет: математика; курс предпрофильной подготовки «Доказательства в решении уравнений»; содержание курса и предлагаемого занятия превосходит требования ФГОС.

Отличительной особенностью   по курса предпрофильной подготовки является:

1) насыщенность   ситуациями выбора (в том числе, - ситуациями самооценки и рефлексии);

2) не менее 1/3 доли времени отводится на самостоятельную работу; учение носит деятельностный характер, новые знания приобретаются самостоятельно в процессе решения задач, анализа моделей, сопоставления фактов…;

3) среди форм и методов преобладают проектные и исследовательские; проектный характер урока определяется

  • незаданностью модели результата;
  • открытостью ресурсного обеспечения;
  • наличием гипотез и деятельности по их доказательству;
  • ожиданием инсайта;

4)учение происходит в результате преодоления (или попыток преодоления) личных и групповых проблем.

Цель: создать условия для мотивации и оценки готовности обучающихся  использовать доказательства при решении уравнений.

Задачи :

  1. Содействовать развитию интеллектуальных компетенций обучающихся в форме способностей самостоятельно устанавливать причинно-следственные связи, выделять существенные признаки объектов и явлений, устанавливать аналогии, а также в форме  аналитико-синтетических способностей.
  2. Содействовать формированию   у обучающихся навыков моделирования и проектирования.
  3. Обеспечить обучающимся индивидуальные возможности для самооценки своей готовности к использованию доказательств в решении уравнений.

Результаты:

  1. Представления обучающихся о роли и месте метода доказательства при решении уравнений.
  2. Качество доказательной защиты (представления) проектов-решений, подготовленных обучающимися.
  3. Самооценка готовности обучающихся к использованию доказательств при решении уравнений.

Нестандартные методы решения уравнений занимают все более значимое место в наборе средств организации предпрофильной подготовки, профильных проб и в содержании государственной (итоговой) аттестации по программам основного и среднего (полного) общего образования. Формируемые и оцениваемые при этом компетенции характеризуются как исследовательские, аналитические… От выпускника основной школы, ориентирующегося на продолжение математического образования на «профильном» или «углубленном» уровне требуется овладеть навыками доказательных рассуждений, интеграции средств и методов математики, построения и анализа математических моделей.